
UAVND Technical Design Paper
Unmanned Aerial Vehicles of Notre Dame

College of Engineering
University of Notre Dame

Notre Dame, IN
UAVND@nd.edu

Abstract

This report details the progress that was made over the course of the early fall and late spring in developing a clean-sheet
design for UAVND’s first AUVSI SUAS competition vehicle. A detailed description of the requirements, acceptance criteria, and
testing plan are also included below.

Index Terms

Signal Temporal Logic (STL), Robot Operating System (ROS), Simultaneous Localization and Mapping Algorithm (SLAM),
Light Detection and Ranging Sensor (LIDAR), Flight Controller Unit (FCU)

I. INTRODUCTION

This technical design paper outlines the Unmanned Aerial Vehicles Club of University of Notre Dame’s (UAVND) system
for the 2021 AUVSI SUAS competition. This system offers a distributed approach to autonomous missions. Through the use of
multiple computing devices distributed across each component of the competition and connected through the Robot Operating
System paradigm, the UAV system is capable of autonomous route planning, object avoidance, aerial mapping, and object
identification and classification. By distributing the computing over multiple devices a focus on redundancy and adaptability
is used to create a versatile aerial platform. Which is then tailored specifically to the requirements of the AUVSI SUAS
competition. The following sections outline the specific requirements for meeting the competition goals, an overview of the
ideas behind the system, a detailed review of hardware and software choices, as well as a safety and testing plan for the UAV
system.

Seeing that this is our first year participating in the AUVSI SUAS competition, we were tasked with constructing a clean-
sheet design. The design process follows the systems engineering “V” model which is shown in Figure 1. As such, the design
process began with every team member thoroughly reading the 2021 competition rules document and constructing a list of
explicit requirements. After doing so, we came together as a team and created a comprehensive description of the overall
system requirements and acceptance criteria. This description is presented in the following section.

Fig. 1. This Figure illustrates the approach taken to designing the system



II. REQUIREMENTS AND ACCEPTANCE CRITERIA

2



III. SYSTEM DESIGN

A. ROS

1) What is ROS?: ROS is an open-source robotics
middle ware. It provides the services you would expect
from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-
used functionality, message-passing between processes, and
package management. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple
computers. ROS is a distributed framework of processes (aka
Nodes) that enables executables to be individually designed
and then coupled at run time. These processes can be grouped
into packages, which can be easily shared and distributed.
Additionally, the ROS community is very active, ensuring
strong support for current and future packages. In terms of
functionality, ROS supports a publish-subscribe model where a
node publishes data to a topic from which an arbitrary number
of nodes can receive (i.e. subscribe to) that data. ROS also
supports one-to-one connections called services. In this form
of interaction, a node is able to elicit an action from another
node via a service call. The result of that action is received in
a service response.

2) Why ROS?: ROS was chosen for this project due to
its wide ranging community support for functionality required
within this project. Namely, MavROS, the ROS package for
creating MAVLINK messages (i.e. to communicate with the
flight controller), and ROSBridge, a package for interacting
with non-ROS programs (i.e. the interoperability server). Also,
ROS provides support for easy sensor integration. This is
essential for our use case due to the fact that we will require
a rangefinder for the alphanumeric recognition and a 2D
LiDAR for dynamic obstacle avoidance. The ROS paradigm
of isolating specific tasks to their own nodes allows for an
asynchronous development cycle where various nodes can be
developed at different speeds and times. Lastly, ROS nodes
can be developed in both Python and C++. Having this
capability means that we can utilize the quick development
cycles that Python provides while utilizing C++ for those
nodes that require optimal performance. Each ROS distribution
corresponds to an Ubuntu LTS distribution. We will be using
ROS Noetic with Ubuntu 20.04. Allowing us to make use of
Python3 and avoid the deprecated Python2 that is used in ROS
Melodic (Ubuntu 18.04) and ROS Kinetic (Ubuntu 16.04).

B. Aircraft

1) Design Rationale and Process: For the fabrication and
design of the aircraft, our team decided to use an iterative
process based loosely around the system prescribed in Keane
(Small Unmanned Fixed-wing Aircraft Design). We began
our initial design process through the use of OpenVSP, a
vehicle sketchpad. We chose to avoid VTOL and multi copter
aircraft for the reasons described in the section regarding
alternatives we considered. It was decided to use a twin
tractor, twin tail boom configuration. The twin tail boom
helps with material constraints improving the cost efficiency

of the overall design. A twin tractor design adds redundancy
in the case that one of the motors were to fail during the
mission. A rounded rectangular cross section is used for the
aircraft fuselage. The rounded rectangle design as opposed
to the ellipsoid design allows for increased stability for the
items inside the actual fuselage, and an easy way to drop
the ground vehicle and payload once necessary. The spacious
geometry of the fuselage allows us to comfortably house the
mission payload (i.e. ground vehicle, mapping mechanism,
and alphanumeric recognition system), avionics, and batteries.
After settling on the aforementioned geometry, we compiled a
comprehensive design brief. This design brief was then used
to create a constraint diagram from which we could determine
the necessary wing loading (kg/m2)and thrust (kW ) required
of our vehicle. Using these values, we were able to size the
initial iteration of the aircraft. These values will be used to
construct a model in Solidworks that can be more extensively
analyzed and modified accordingly.

Fig. 2. This Figure illustrates the first iteration vehicle constructed

2) Manufacturing: From the aircraft CAD files the aircraft
will be 3D printed by an external company. This method was
found to be the most time efficient and cost effective. Molding
aircraft parts was considered; however the tools, cost, and
skills required for this were not feasible. For smaller parts (e.g.
ribs) of the actual air frame, we will be using nylon. Carbon
fiber spars and stainless steel will also be used to fortify parts
that carry large portions of the load, such as engine bearers and

3



Fig. 3. This Figure illustrates the constraint diagram we constructed with the
help of ADRpy.

the spars supporting the lifting surfaces. Once we have a CAD
model, the design will be outsourced and manufactured and
sent back to us. Our largest task is creating the comprehensive
CAD model After the parts have arrived, we will:

• Use epoxy resin or bolted-in screws in order to form the
overall air frame structure.

• Parts that may be removed should be attached with screws
for easy removal.

• Parts that must be removed for storage should only have
a couple screws to facilitate easy removal.

Fig. 4. This Figure illustrates the important design parameters characterizing
our air frame (this will be more fleshed out in final paper)

3) Discussion of Airfoils Selected: Extensive research was
done to figure out the appropriate airfoil for the twin tail boom
design. In the end, it was decided to use the NACA 4415 which
has the right amount of camber necessary for a great L/D ratio,
so the airfoil itself allows for great efficiency. The NACA 4415
has been used on multiple twin tail boom designs including the
AAI RQ-2, and AAI Shadow 200 and AAI Shadow 400. We
also went through multiple tests for the best angle of attack
for the main wing (will attach alpha vs Cl/Cd graph in final

paper), and the best option hovered around 2 degrees. This
design was used for both our main lifting surface and our
horizontal stabilizer. As far as the vertical stabilizer, we went
with the general fin design with no camber and symmetrical,
as the main reason the vertical stabilizer is there is to prevent
rollover. With this configuration we had a maximum L/D ratio
of approximately 34.

Fig. 5. This Figure illustrates the airfoils used on various surfaces throughout
our air frame

C. Autopilot

Autonomous flight is an essential aspect of the AUVSI
SUAS competition. For this reason choosing an capable
autopilot is crucial. For an autopilot to be capable of both
meeting the competition requirements and fit into our team
design plan it must meet the following criteria:

• Fly an autonomous mission reliably, safely, and
accurately

• Capable of using return to launch as a fail safe
• Compatible with GPS units and radio telemetry necessary

to communicate with the Interop server
• Communicate with a small single board computer on the

UAV for active obstacle avoidance
• Interface with Robot Operating System paradigm used by

our team
• Open source software with community support

Our team derived these requirements from the rules of the
competition and funding limitations. From these requirements
we were able to narrow our choices to PX4 and Ardupilot.
Between these two options Ardupilot supported the features
we required, included more documentation, and has a
larger code base. Once an autopilot software was chosen a
compatible flight control unit (FCU) could be found. From
the list of supported FCUs in the Ardupilot documentation
a few candidates were chosen based on functionality beyond
Ardupilot support, redundancy, and cost. The following figure
compares the final FCU selection.

The Pixhawk 2.1 (Cube) was chosen after reviewing
these features as well as factors like prior experience
and the accessibility of the units. The Pixhawk 2.1 was
selected for the wide range of features, strong community

4



Fig. 6. This Figure illustrates the various flight controllers considered for use
in the project

support, redundancy in critical components, and team member
experience. Multiple versions of the cube have been created
allowing for the autopilot hardware specific to aerial and
terrestrial applications. By using slightly different versions of
the internal processing unit on different Pixhawk 2.1 models
cost, energy, and weight can be saved. For example a terrestrial
targeted version could be used for the ground vehicle that has
less redundancy in sensors specific to flight. Additionally, the
Pixhawk 2.1 has a recommended ecosystem which includes
supported GPS modules, additional sensors, and telemetry
links to a ground station ensuring compatibility.

The other autopilot systems were eliminated mainly due to
limited redundancy or availability. Although the CUAV v5 plus
contained many of the same features as the Pixhawk 2.1 some
team members had prior experience with the pixhawk 2.1 as
well as immediate access to units for SITL testing. The mRo
Pixhawk also contained all of the necessary features but lacked
the redundancy featured in the pixhawk 2.1. Additionally, the
IMU sensors in the mRo version of the pixhawk are not
isolated from vibration resulting in less accurate readings. The
ability to run debian linux as well as built in wifi on the
BeagleBone Blue allows for easier development but the lack
of redundancy, community support, and failsafe features are
the reasons it was eliminated as a viable option.

The Pixhawk 2.1 in the UAV will communicate with a
ground control station through a telemetry radio connection. At
the ground station an instance of APM Planner 2.0 will be used
to interact with the UAV. This software was chosen as it offers
cross compatibility between operating systems and is open
source. By using an open source mission planning software
our team will be able to build on tested features. Using the
MavROS ROS package, our custom software can externally
control the UAV through MAVProxy while benefiting from
the reliability of a tested ground station software.

D. Obstacle Avoidance

1) General System Layout: The obstacle avoidance
capabilities of the system can be divided into two sub-
capabilities: dynamic obstacle avoidance and stationary
obstacle avoidance. Both of these sub-capabilities will

be implemented within their own ROS node. The
StationaryObstacleAvoidance node will reside on the
ground station computer and subscribe to topics from which
it can receive the 12 mission waypoints and stationary
obstacles. It will be responsible for computing an initial
trajectory which avoids all stationary obstacles and satisfies
all mission waypoints. The DynamicObstacleAvoidance
node will reside onboard the aircraft and subscribe to
topics from which it can receive data generated by
the onboard 2D LiDAR sensor, the locations of other
airborne teams, and the initial trajectory through the region
produced by the StationaryObstacleAvoidance node. The
StationaryObstacleAvoidance node will optimize a signal
temporal logic (STL) specification in order to generate the
trajectory through the region. The DynamicObstacleAvoidance
node will also utilize STL in order to generate a sub-trajectory
around the nearby obstacle. The set of waypoints going
around the local dynamic obstacle are inserted into the master
trajectory generated from the StationaryObstacleAvoidance
and uploaded to the flight controller via MAVROS
functionality (i.e. a service call).

2) STL Overview: STL can be described as a type of
time dependent Boolean logic. Unlike in Boolean logic, STL
formulas are qualified using a time domain. That said, STL is
defined over a signal y(t) which is continuous over the entire
time domain. In addition to the Boolean logical operators of
NOT, AND, and OR, STL possesses time dependent ALWAYS
and EVENTUALLY operators. These various operators can be
used to define predicates. One can then combine predicates to
create specifications that can be further combined to create
one global specification describing the desired behavior of
a system. This is particularly useful because one can define
this global specification in terms of Robust Semantics. In
doing so, a given signal no longer discretely satisfies or
does not satisfy the specification. Now, there is a quantitative
indication of how well a signal satisfies the given specification.
And so, an optimization problem can be defined where the
goal is to find the signal that best satisfies the robustness
function. In the context of the StationaryObstacleNode, this is
particularly useful as one can create a cost function which can
be minimized to find the optimal route through the region. STL
formulations have several advantages over other approaches.
A particularly notable example includes the ability to specify
complex combinations of time dependent actions that would
be otherwise difficult to implement. Just as architects construct
complex designs out of simple building blocks, STL allows
for the construction of complex specifications from simple
predicates. For the sake of simplicity and the ability to generate
a globally optimal solution using mixed integer programming
(MIP), we will be using rectangular predicates (i.e. made up
of linear functions). This means that all of our waypoints
and obstacles will take the form of rectangles in our STL
specification. This specification will then be optimized through
the use of GurobiPY.

5



Fig. 7. This Figure illustrates the trajectory generated by optimizing a STL
specification consisting of a single obstacle and goal region

E. Imaging System

In order to automate the process of imaging for both
the mapping and alphanumeric recognition a method
of controlling the cameras through the UAV’s onboard
companion computer needed to be determined. Due to the
differences in camera requirements between the mapping
portion of the competition and the alphanumeric identification
the imaging system will comprise two cameras. A Canon
PowerShot SX620 HS was chosen for the mapping system
and a NDI camera capable of both video streaming through
a wired connection and taking photos for the alphanumeric
recognition system.

Necessary features ALPHA:
• Offload pictures (NDI) for AI image processing
• Take pictures remotely and precisely for mapping
• Scripting (Could be base on gps, obstacles, or others)
• Ability to shoot in RAW and other locked formats

(Better for AI sometimes)

Necessary features Mapping:
• Take pictures remotely and precisely for mapping
• Scripting (Could be base on gps, obstacles, or others)
• Interface with Ardupilot (CHDK)

The industry standard for airplane tail numbers is one foot
lettering. Using this standard for alphanumeric recognition 12
pixels per foot are needed to recognize the characters. In ideal
conditions the goal of the alpha numeric systems is to have 12
pixels per foot of ground area at max competition elevation.

F. Object Detection, Localization, Classification

Alphanumerics are identified as separate from the ground
area while towards the edge of the field of view. Using

the angles to the character, altitude of the UAV, pitch,
roll, and GPS coordinates a triangulated coordinate for the
potential alphanumeric will be recorded. After the way points
have been traversed the located objects will be used in
an STL instance. An efficient path over the previously
identified objects will be developed and high resolution images
taken for further processing. This trajectory will allow the
UAV to detect characters with higher confidence without
compromising the waypoint mission. Using an optimized path
to re image previously identified objects will help prevent
missed alphanumerics. This solution allows for more of the
competition area to be effectively imaged all without deviating
from the waypoint mission.

1) Object Detection: Due to the processing time of large
format images the object detection will take part in two steps.
A live video from the alphanumeric camera will be reviewed
by a computer vision program. From this video the characters
can be separated from the ground. Once a character is found
a high resolution image will be taken allowing for more
advanced processing. Additionally, the live video processing
will be trained to see anomalies that may be characters but
are at too steep of an angle to currently identify. These object
locations will be saved and an STL instance will be used to
determine an efficient path between them for re imaging. The
computer vision used to identify characters and anomalies will
use the open source OpenCV python library to develop the
program.

2) Classification: An AI program will give an
alphanumeric character along with a confidence score.
Characters with low confidence scores will be either marked
for another flyover (given a weight and STL used) or if that
is not feasible within the mission timeframe an image will
be transmitted to the ground station for Human review. The
classification portion of the object detection will also use the
OpenCV library.

3) Localization: Using a LiDAR sensor with a fixed mount,
and the pitch data from the UAV an accurate altitude can
be calculated. Then using this altitude and the derived angle
between the camera and the object a distance vector between
them can be calculated. This distance vector along with the
GPS coordinates of the UAV allow for a GPS location of the
object to be determined.

G. Mapping

In order to generate a high-quality map, the system demands
several key features. The ideal solution would begin with a
versatile camera system that allows for dynamic adjustments
to the aperture, ISO, and shutter speed to properly expose
the images collected. A fast focal ratio as well as a global
shutter would be preferred to preserve the fine details within
the image. That being said, there are several constraints that
need to be considered. The system must be lightweight, able
to interface with Ardupilot, and affordable. While there are a
myriad of high quality imaging systems out there suitable for
the job, most come with a hefty price tag. With this in mind,
the Canon Powershot SX620 HS was chosen as it is able to

6



satisfy all the constraints and provide reasonably high-quality
data. The camera is able to interface with Ardupilot via the
Canon Hacker Development Kit (CHDK).

The CHDK platform allows for autonomous control of the
camera, allowing for in flight adjustments of the focal length,
exposure, and intervalometer if needed. The captured images
can be offloaded via the CHDK Photo Transfer Protocol
extension (PTP). While the PTP extension is functional, it
may prove to be a bottleneck in the system as its file transfer
times are rather slow for the large raw files. Alternatives are
currently being explored.

The next choice to be made concerns that of the map
making software. OpenDroneMap (ODM) was chosen due to
its affordability without a loss in performance. Our team is
considering multiple options regarding where the stitching of
the orthophoto will occur.

• The most streamline solution would be to run ODM
on-board the aircraft, however it may prove too
resource intensive to execute given the baseline system
requirements call for 4 GB RAM and 20 GB storage
minimum to process around 100 images. Given we
anticipate upwards of 350 images, a fast CPU, 16 GB
RAM and 100 GB Storage would be an ideal setup
for our needs. One system that shows promise is the
UDOO single-board style computers with quad core
AMD processor, and extendable storage and memory
that would adequately fit our needs.

• The next option would be to process our data in the cloud.
ODM has an application CloudODM that allows us to
run ODM in the cloud via the NodeODM API. This is
currently an attractive solution if we can confirm it has a
reasonable run time while maintaining the files’ integrity.

• The last option would be to offload the files after landing
and process them on the ground through a vanilla instance
of ODM. While this is a simple, straightforward solution,
our team, by competition rules, would only have 10
minutes to assemble and send off the map for assessment.

The current course of action is to get well acquainted with
running ODM on the ground, as discussed in our last solution,
and experiment with different CPU, memory, and storage
combinations to see if on-board stitching is viable.

H. Communication

1) Communication Links: For our manual receiver link, we
elected to use the TBS (Team Black Sheep) Crossfire Mini.
The TBS Crossfire Mini has a range of up to 40 kilometers,
more than enough for 10 kilometer range our team determined
was necessary. As well, the TBS crossfire Mini interfaces
well with ArduPilot, our flight software. The TBS crossfire
also has frequency hopping built in, and communicates on the
frequency band 915 MHz. This allows not only for us to not
worry about interference on the ground, but anywhere close
by. Additionally, immunity to onboard noise as well as ultra

low latency and a 150 Hz update rate. It also has bandwidth
control and range optimization. As far as the links between
the actual UAV and the ground station, we have the TBS
crossfire mini for manual control, and a wireless controller
linked. As previously stated, this is approximately 915 MHz.
The second connection to the UAV is the laptop running the
ground communication software is the RFD 900+ Telemetry
radio. This connects the ground station laptop to the actual
drone. Its communication frequency is around 915 MHz as
well. Its range is about 902 MHz to 928 MHz. The third link
is an LTE link. Our whole network runs on one VPN, so we
can link the aircraft IP address to the ground station IP address.
This also allows all the ROS topics to communicate with each
other because they will see each other on the same VPN. The
VPN server will be run in the cloud. We will presumably
use AWS as our cloud provider and Wireguard as our VPN
due to its easy accessibility on Ubuntu. The frequency of this
LTE link hovers around 700 MHz. We chose to use LTE as
opposed to wifi so we do not have to take on the complexity
involved with setting up directional antennas. In addition, we
checked the competition map location, which is in a very good
service area, negating the necessity of devoting time and effort
to constructing a Wifi signal.

Fig. 8. This Figure illustrates the communication links to be implemented
between each component within our system

2) Antenna Tracking Rationale: To maximize the range of
the wireless communication channels, each transmitter and
receiver connected to the ground station will use directional
antennas. The antennas will be mounted on an automatic
antenna tracking device which will continuously keep the
antennas aligned with the UAV. One servo below the tracker
will turn to point it in the right compass direction and a second
servo on the side will control its elevation angle. Because the
location of the ground station is in the center of the flight zone,
the first servo must have 360 degrees of rotational freedom. A
continuous rotation servo will be used to meet this constraint.
The elevation servo requires 90 degrees of rotation to allow the
antennas to point anywhere between horizontal and vertical. A
standard high-torque servo will be used to adjust the elevation.
Both servos and the telemetry radio transceiver connect to a
Pixhawk flight controller on board the antenna tracker, which
will be loaded with Ardupilot’s AntennaTracker software.

7



Using its own GPS and orientation data, as well as the GPS
data from the Pixhawk on board the UAV, it will calculate the
relative position of the UAV and move the tracker to point in
its direction.

I. Air Drop

1) Unmanned Ground Vehicle: The following components
will make up the ground vehicle:

• The Ground Vehicle consists of various electronic
components. For the controller, the UGV will use a
Pixhawk 2 which will relay signals back and forth from
the ground stations which will allow for a direct and
stable connection to the Ground Vehicle. The Pixhawk
2 will also allow for the automation of the UGV and will
direct it to destination to drop off the payload.

• To power the DC motors for the wheels, electric speed
controllers (ESC) will be used. The ESC’s will be
connected from the Pixhawk 2 to the DC motors to power
the motors and allow the UGV to move. This will also
keep the UGV from exceeding ten miles per hour, or the
maximum speed allowed for the UGV.

• A LiPo battery will be used in the UGV to power up the
entire system by allowing power to go to the Pixhawk 2.

• Companion Computer. The Companion Computer will
allow for our systems to interface and communicate with
ArduPilot on a flight controller. Using MAVLINK, the
UGV will be able to move autonomously. Thus, the UGV
will be able to drive to the payload drop off destination by
communicating between the hardware and the software.

• Alongside the Companion Computer is the ROS node that
the UGV will incorporate. This will allow the UGV to
communicate with the UAV as well as the ground control
from a software perspective.

• Lastly, an LTE dongle will also be used to allow
for communication between the different parts of the
competition. It will allow for communication similar to
the ROS node; however, it is the hardware aspect of the
communication between all aspects.

The following describes the iterative design for the ground
vehicle:

• Initially, the design for the Ground vehicle was going to
consists of only two wheels to optimize the size of the
UGV; however, once drafting began, an issue arose with
the center of gravity of the vehicle. With the components
that the UGV consists of, the two-wheel iteration would
prove to be a difficult task especially with the given
constraints. Although this design allowed for the UGV to
be lighter, the overall difficulties resulted in approaching
the UGV a different way.

• The second iteration consisted of using two different
wheel sizes and making the UGV a two-wheel drive. This
design would allow for the body of the UGV to be at an
angle which would allow for the payload to slide of the
frame. Some issues with this design is the practicality

of using two different tire sizes which results in the
UGV being a two-wheel drive instead of an all-wheel
drive. Also, some problems could arise with two different
tire size and could cause different issues throughout the
process.

• The final iteration, shown above or below, is a all-wheel
drive vehicle with an elevated portion on the back en of
the UGV. Like the second iteration, an angled surface is
ideal in order to allow the payload to easily slide off the
frame. This iteration will allow for an all-wheel drive
which can allow for the payload to reach its destination
quicker while still being able to maintain its speed below
ten miles per hour.

The following describes how the water bottle payload will
interface with the UGV:

• By having the UGV frame at an angle, it will allow for
the payload to slide off when it reaches the destination.
A servo will be used to secure the payload along with
a frame that will allow the payload to be secured
throughout the process. When the UGV reaches the
destination, the servo will then change positions which
will open the frame and allow the payload to slide from
the frame. The UGV will reverse once the servo opens
and will allow the payload to completely drop from the
frame.

2) Drop Mechanism: The air drop system consists of two
parts: the UGV (Unmanned Ground Vehicle) and the release
mechanism.

The release mechanism consists of the cargo bay area, the
payload release module, and the trap door.

The cargo bay design fits the shape of the UGV to prevent
excess movement while the plane is in the air. The payload
release module will be located at the top of the cargo bay
and the trap door will be located underneath the UGV.
The payload release module will carry most of the weight
of the UGV, while the trap door will not be under normal force.

The payload release module we decided to go with is the
servoless payload release from E-flite. This release module is
a lightweight and compact mechanism, which will be easy to
install inside the cargo bay.

The trap door will consist of a solid plank of [insert
material] which will be attached to the main cargo bay by a
torsion spring. The spring torque will be just enough to hold
the trap door of the plane shut, but weak enough to let the
UGV push through when the release module is activated.

Operation of release mechanism: To simplify the calculation
of the ODT (Optimal Drop Time) and ODD (Optimal Drop
Distance), from the ground target, we will keep the UAV at a

8



constant speed of [insert] and at a constant cruise altitude of
250 ft. Given the assumptions of no drag, no wind, and UGV
in freefall, the drop time is:

ODT =
√

2h
g

Where h is the cruise altitude and g is the gravitational
acceleration. The drop distance is:

ODD = v
√

2h
g

Where v is the constant speed of the UAV. Once we test
our UAV dropping mechanism, we will modify the ODT and
the ODD to account for the drag and the slow descent of the
UGV.

Fig. 9. This Figure illustrates the ODT and ODD of the UGV

IV. ALTERNATIVES CONSIDERED

Initially, our design team considered a few different options.
These included VTOL and multicopter aircraft. A VTOL
design was not selected due to the potential mechanical and
firmware complexity. Likewise, the maximum takeoff weight
would be impacted substantially due to the vertical takeoff
and landing. In addition, the multicopter was not selected due
to endurance concerns regarding an inability to complete the
6 mile waypoint string and then continue on to successfully
attempt the alphanumeric recognition, UGV and mapping
tasks. Likewise, multicopters are prone to crashes when
experiencing motor problems. As such, it was decided that a
properly design fixed wing would better satisfy the mission
requirements. Another point of contention was that of the
propulsion. Initially, we were considering using either petrol
or electric motors. The petrol motor’s increased complexity
was justified through the substantial increase in range due to
petrol’s much higher energy density than LiPo batteries. That
said, after examining the mission requirements once more, it
became apparent that we would not be required to fly for any

longer than 30 minutes. Keeping that in mind, the relatively
high efficiency and simplicity of brushless motors justified
their use in the place of petrol motors. (in the final paper
we will also discuss PX4 vs ArduPilot here–we will also
discuss the various frames we debated using in the initial
brainstorming we did using OpenVSP)

V. TESTING AND EVALUATION PLAN

A. Developmental Testing

In regards to testing the individual nodes within our
network, ROS makes doing so very convenient due to its
support of the rostest package. This package makes writing and
launching test nodes within a system very easy to integrate.
Generally speaking, we will be pushing spoofed sensor data
into the nodes within our network that we would like to test
and observing the output. Observing the results of this fudged
sensor data will be safe and effective due to the extensive
and well integrated support for Gazebo within ROS. Within
Gazebo, we will be able to construct a custom object that
will mimic the dynamics of our airframe. Likewise, we will
be able to model a sample mission grid with a search area,
series of waypoints, drop zone, and mapping region. Nodes
requiring imaging sensor input will also be easily tested seeing
that Gazebo allows us to pipe image output from a defined
camera view into an image topic to which we can subscribe.
After we have verified the correct functioning of the ROS
nodes under spoofed data, we will be able to move onto the
simulator data from Gazebo discussed above. This will be done
by wiring up a MAVROS node to a Software-In-The-Loop
(SITL) instance of the flight controller unit (FCU) running on
the test computer. This will be followed up by a Hardware-
In-The-Loop (HITL) test using a real Pixhawk 2.1 Cube to
interface with the MAVROS node.

The focus on distribution of computing processes and the
system integration that ROS allows for means that each portion
of the system can be tested independently. As each process is
developed in parallel with only the overarching requirements
predefined each system can be individually optimized. For
example the dynamics of the air frame can be tested before
the pathfinding algorithm is ready to be used in flight. As
development progresses each system can independently be
tested in a SITL situation, then HITL, and with further physical
system integration until the complete system is tested together.
By testing the parts of the system in this order each can be
evaluated to meet the derived requirements of that system
in the specific version testing implemented. Once capable
of meeting these requirements in simulation the system can
progress to the next phase in testing.

1) Mission Testing: In order to fully test for mission
accuracy, the team is going to test a few key features on the
fully integrated system within the airframe. In order to test the
durability of the ground vehicle, what we are going to do is
have a constant speed test and make sure that the payload lands
correctly. After that, we will spoof waypoints around a large
uninhabited area, in order to see if the UAV can autonomously
follow a set path. In order to accomplish this, the team will

9



Fig. 10. This Figure illustrates first iteration design that was considered in
OpenVSP

be using a large farm in Michigan that has enough space for
waypoints that are far apart from each other. This will give
us the option of making sure the UAV has enough waypoints
which allow us to measure mission accuracy. As well, we will
use the airspeed sensors to make sure that the speed stays
below 25 m/s during cruise and within a reasonable range
(12-18 m/s) for both takeoff and landing.

VI. SAFETY RISKS AND MITIGATION

Fig. 11. This figure outlines the risks and mitigation of UAV development
in the lab

Fig. 12. This figure outlines the risks and mitigation of UAV flight

REFERENCES

[1] András Sóbester Andrew J. Keane and James P.
Scanlan. Small Unmanned Fixed-wing Aircraft Design: A
Practical Approach. John Wiley Sons Ltd, 2017. ISBN:
9781119406297.

[2] Calin Belta and Sadra Sadraddini. “Formal Methods for
Control Synthesis: An Optimization Perspective”. In:
Annual Review of Control, Robotics, and Autonomous
Systems 2.1 (2019), pp. 115–140. DOI: 10.1146/annurev-
control-053018-023717. eprint: https://doi.org/10.1146/
annurev-control-053018-023717. URL: https://doi.org/
10.1146/annurev-control-053018-023717.

10


